Question 1

1(e) sodium chloride	1
----------------------	---

Question 2

2(b)	3 rd box down ticked (silver chloride)	1	
------	---	---	--

Question 3

3(c)(i)	(substance) chemically combined with water	1

Question 4

4(d)(i)	(substance that is) chemically combined with water	1
4(d)(ii)	heat	1

Question 5

5(c)	4th box down ticked (sodium nitrate)	1	
------	--------------------------------------	---	--

Question 6

6(c)	sodium sulfate	1	١
------	----------------	---	---

Question 7

7(b)	ammonium sulfate (3rd box ticked)		Π
------	-----------------------------------	--	---

Question 8

8(c)(i)	H ₂ SO ₄	1
8(c)(ii)	fertiliser	1

8(c)(iii)	M1 M_r of $(NH_4)_2SO_4 = 132$ (1)	2
	M2 $2 \times 14 = 28$ and $\%N = 100 \times 28 / 132 = 21.2\%$ (1)	

Question 9

9(d)(i)	water(s) of crystallisation	1
9(d)(ii)	blue	1
9(d)(iii)	CuSO ₄ ·5H ₂ O	2
	M1 CuSO ₄ (1) M2 -5H ₂ O (1)	

Question 10

10(g)(i)	sodium propanoate	1
10(g)(ii)	CH ₃ CH ₂ COO ⁻	1

Question 11

	11(b)	A	1	1
- 1			1	ı

Question 12

12(e)	formulae	1
	state symbols, $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$	1

Question 13

13(b)(i)	no more fizzing	1
	(ZnCO ₃) stops dissolving OR a (white) solid remains	1
13(b)(ii)	to use up all the acid / H ⁺ ions	1
13(b)(iii)	a solution that can hold no more solute	1
	at the specified temperature	1
13(b)(iv)	zinc oxide OR zinc hydroxide	1
13(b)(v)	barium sulfate is insoluble	1

Question 14

14(d)(i)	hydrochloric (acid)	1
14(d)(ii)	neutralisation	1
14(d)(iii)	titration	1
14(e)(i)	white	1
14(e)(ii)	silver chloride	1
14(e)(iii)	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$	3
	M1 AgCl (as <i>only</i> product) (1)	
	M2 Ag⁺ and C <i>I</i> ⁻ (as <i>only</i> reactants) (1)	
	M3 state symbols (1)	

Question 15

15(a)	$CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2O + CO_2$	2
	M1 H ₂ O and CO ₂ as product (1)	
	M2 rest of equation correct (1)	
15(b)	M1 fizzing / effervescence (1)	2
	M2 solid disappears / dissolves (1)	
15(c)	filtrate	1
15(d)(i)	M1 a solution that can contain no more solute (1)	2
	M2 at a given temperature (1)	
15(d)(ii)	cool the solution	1
15(e)(i)	anhydrous	1
15(e)(ii)	M1 M_r Ca(NO ₃) ₂ = 164 (1)	3
	M2 mol Ca(NO ₃) ₂ = $2.46 / 164 = 0.015(00) (1)$	
	M3 0.015(00) / 0.015(00) = 1 0.0600 / 0.015(00) = 4 and x = 4 (1)	

15(f)	$2NaNO_3 \rightarrow 2NaNO_2 + O_2$	2
	M1 NaNO ₂ on the right-hand side	
	M2 equation completely correct	